
BEARING LOADS IN A VEHICULAR FLYWHEEL BATTERY 
 

B.T. Murphy, D. A. Bresie, and J. H. Beno 

The Center for Electromechanics 
The University of Texas at Austin 

PRC, Mail Code R7000 
Austin TX 78712 
(512) 471-4496 

 
 
 
ABSTRACT 
 
 Radial and axial rotor support bearings are critical ele-
ments in flywheel batteries for vehicle applications.  This pa-
per discusses the quantification of bearing loads required for 
the development of optimal bearing designs, particularly mag-
netic bearings.  The primary contributors to bearing loads are 
shown to be vehicle shock, vibration, maneuvering, and gyro-
dynamics.  Emphasis is placed on transit bus applications.  
Available data for each is presented, including actual meas-
urements made on buses, and a detailed analysis of gyrody-
namics. 
 
INTRODUCTION - FLYWHEEL ENERGY  
STORAGE SYSTEMS (FESS) 
 
 The design of a high performance FESS for use in a 
vehicle poses many challenges.  In order to achieve an attrac-
tive specific energy (kWh/kg), it is necessary to construct the 
rotor from materials with high specific strength (ultimate 
stress/density) [1], leading to selection of composite materials 
employing graphite fibers over metals.  This allows a higher 
specific energy, and increases rotor tip speed from several 
hundred m/s for high strength alloys, to over 1,000 m/s for 
composites.  The high tip speed, in turn, leads to an enormous 
increase in parasitic windage loss.  To reduce windage losses 
to acceptable levels requires spinning the rotor in a very tight 
vacuum on the order of 10-3 torr [2]. 
 The use of a tight vacuum leads to another set of design 
challenges of particular interest for this paper, an already dif-
ficult task for the bearings is compounded by the need for 
vacuum compatibility.  The bearings must be capable of ex-
tremely high speed, have very low friction, be stiff to ade-
quately constrain the rotor, have long life, and have high load 
capacity.  These requirements frequently lead to choosing 
magnetic bearings for FESS applications, despite the relative 
immaturity of magnetic bearing technology. 
 This paper describes issues associated with integrating 
FESS on future transit buses, with particular emphasis on 
magnetic bearings and their loads.  The transit bus in question 
is the Advanced Technology Transit Bus (ATTB) being de-
veloped by Northrop with funding from the Federal Transit 
Administration (FTA) and the city of Los Angeles.  The FESS 

is being developed by The University of Texas at Austin Cen-
ter for Electromechanics (UT-CEM), with funding from the 
city of Houston, the Defense Advanced Research Projects 
Agency (DARPA), the State of Texas, and others.  Conse-
quently, the paper is of interest to automotive engineers as 
well as the FESS developmental community. 
 
SOURCES OF BEARING LOADS 
 
 Bearing loads are generated primarily by two sources:  
the vehicle and the FESS itself.  Since the FESS is mounted in 
the vehicle, it is subjected to base motion input at the mount-
ing points.  Motion of the mount points can be classified as 
shock, vibration, and gross vehicle motion (i.e., maneuvering).  
Examples of these are potholes, cobblestone pavement, and 
cornering, respectively.  Another source of bearing loads is 
residual mass imbalance of high speed rotors.  These four load 
classifications (shock, vibration, maneuvering, and imbalance) 
are useful since different methods of analysis and testing 
would be used for each.  There is an important sub-
classification to maneuvering, referred to as gyrodynamics.  It 
also requires special methods of analysis.  All these classifica-
tions will be discussed. 
 The literature contains many references of measured 
vibration and shock loads on vehicles caused by irregularities 
in the road or terrain.  Most measured values are defined in 
terms of Power Spectral Density (PSD) plots [3].  PSD’s give 
predicted amplitude and frequency values of road vibration 
that are most likely to occur under various operational situa-
tions.  Data shows that road induced vibration reduces rapidly 
with increased frequency.  Since high frequency vibration is 
usually easier to filter than low frequency vibration, the FESS 
mount points will exhibit predominately low frequencies of 
0.25 Hz up to about 25 Hz.  Nearly all published data is for the 
road input at either the road surface or at the axle.  No pub-
lished data was found for vibration or shock on the chassis of 
a bus. 
 SHOCK - Shock events, such as potholes, are common 
occurrences in vehicles and are characterized by their brief 
transient nature.  Specialized methods of analysis and test 
have been developed [4] [5], which focus on the impulsive 
aspect of the event.  The effect of a shock on a system is often 
characterized by the peak acceleration of the system resulting 
from the shock.  Shock inputs from the roadway are mitigated 
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(i.e., filtered) by the vehicle suspension.  The absolute motion 
of the FESS mount points resulting from shock loads are re-
quired in order to establish FESS bearing loads.  Mount point 
motion is often represented as a transient waveform of dis-
placement or acceleration vs. time.  Ideally, the motion in 
three orthogonal directions would be specified for each mount 
point.  The precise waveforms are a function of both the type 
and severity of the shock.  In simulation, however, the same 
waveform is often used at each mount, and vertical, lateral and 
longitudinal directions are treated independently. 
 Shocks to the FESS can also occur due to objects 
bumping or striking the FESS housing or support frame, such 
as during collisions.  Quite often, acceptance or qualification 
tests are performed in this manner.  Northrop has specified 
such an acceptance test in the System Specification for the 
ATTB.  It requires that, "The ATTB mechanical and electrical 
equipment shall not suffer damage or performance degradation 
when subjected to the shock levels of 20 gee peak, 11 ms half-
sine shock pulse in each direction along three mutually per-
pendicular axes," [6]. 
 
 VIBRATION - Vibration is distinguished from shock in 
that the input and response attain steady state amplitudes 
which are maintained for an appreciable length of time.  The 
transients that happen when the vibration source is first turned 
on or off are either unimportant, or are treated using shock 
methods.  Vibration motion of the FESS mount points can be 
expressed as spectral density plots of acceleration vs. fre-
quency.  Using published PSD’s, engineers have reconstructed 
typical surface terrains for use in computer simulations that 
test mounting hardware performance.  Not contained in this 
approach is the transmissibility of the bus chassis itself and its 
contribution to mounting loads.  The tires and suspension of 
the bus generally attenuate the high frequency road loads. 
 The acceptance test specification [6], requires that 
"functional equipment shall operate without degradation dur-
ing and after exposure to vibration as encountered in normal 
revenue service."  The specific vibration spectrum for this 
functional test is shown in figure 1, and is for a location to-
ward the rear of the bus.  From an endurance standpoint, the 
specification also calls for operation "without degradation 
after being exposed to 1,000 hours of vibration in the non-
operating state."  The PSD for endurance is the same as the 
functional requirement, except with a reduced maximum 
gee2/Hz of 0.33. 
 
 MANEUVERING - Vehicle maneuvering refers to the 
net rigid body motion of the vehicle (i.e., any event that results 
in a change in vehicle linear momentum).  Some examples are 
cornering, braking and accelerating.  Corresponding linear 
acceleration of the vehicle leads directly to loads on the FESS 
bearings.  Such accelerations are generally limited by tire ad-
hesion to several tenths of a gee.  This would be the entire 
extent to which vehicle maneuvers need be considered, were it 
not for the presence of gyroscopic action of the high speed 
rotor discussed in a later section. 
 
 
 

 
 ROTATING MASS IMBALANCE - Another source of 
loads for FESS bearings is residual mass imbalance of the 
flywheel rotor [7].  The magnitudes of these loads are propor-
tional to the imbalance of the rotor, and are also a function of 
the dynamics of the rotor bearing system.  Like most high 
speed rotors, FESS flywheels are precision balanced.  After 
balancing, the flywheel’s mass center will be within 1.3x10-6 
m (50x10-6 in.) of the center of rotation.   The center of rota-
tion is dictated by the radial magnetic bearings.  For this de-
gree of balance the resulting bearing loads will be approxi-
mately 89 N (20 lb), or less within the FESS operating speed 
range.  One advantage presented by magnetic bearings is that 
they offer the potential to accommodate much larger mass 
imbalances than mentioned above.  In the event that the FESS 
flywheel rotor does not hold its precision balance over many 
cycles of use, the magnetic bearing control algorithm can be 
adjusted to effectively rebalance the rotor [8][9]. 
 
 GYRODYNAMICS - Gyroscopic effects are due di-
rectly to the relatively large angular momentum of the fly-
wheel rotor, a vector quantity possessing both magnitude and 
direction.  For a high speed flywheel rotor, its angular momen-
tum vector points along the rotational spin axis and has a large 
magnitude.  Attempts to change orientation of the flywheel 
spin axis (and with it the direction of the angular momentum 
vector), requires the application of large torques.  Since noth-
ing “touches” the flywheel except the support bearings, this 
torque must come from the radial bearings. 
 The theory of flywheel gyroscopics for road vehicles 
has been treated elsewhere [10].  The most important relation-
ship describes the torque required to change the orientation of 
the flywheel spin axis. 

 θ&Ω= Ptorque  (1) 

where 
 P = polar moment of inertia of flywheel rotor (kg-m2) 
 Ω = spin speed of flywheel rotor (rad/s) 

 θ&  = turning rate of the flywheel spin axis (rad/s) 
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Figure 1.  Specification for imposed vibration spectrum for 

an operating flywheel mounted toward rear of bus [6]



 In some applications, gyroscopic torques can be large 
enough to affect the motion of a vehicle. Examples are ocean 
going ships and space vehicles [11].  In the case of a bus or 
car, the gyroscopic torque was shown by [10] to be too small 
to influence the motion of the vehicle.  However, the torque is 
large enough to be a major contributor to loads on the radial 
bearings.  If the flywheel is solidly anchored to the bus such 
that it must execute every turn experienced by the bus, the 
bearing loads can be more than 10 times the capacity of the 
radial magnetic bearings.  This aspect is discussed further in a 
later section. 
 To prevent the generation of large gyroscopic torques, 
the orientation of flywheel rotors must be isolated from the 
orientation of the vehicle chassis.  In practice this means that 
the flywheel spin axis must be vertical.  This isolates the fly-
wheel from the vehicle yaw changes (i.e., turning).  In addi-
tion, some mechanism or device must support the flywheel, 
allowing it to pitch (nose up/down) and roll (rocking side-to-
side) as freely as possible relative to the bus. 
 A mathematical model has been developed to study the 
interaction between a flywheel and a bus (fig. 2).  The model 
represents a rigid rotating flywheel mass inside its housing, 
which is restrained by springs in both the pitch and roll coor-
dinates.  These springs can be attached to the vehicle frame, or 
they can be inertial (i.e., due to gravity).  Viscous damping 
also acts in parallel with the springs.  An addendum to this 
paper presents the dynamic equations of motion, using three 
angular coordinates, which completely describe the orientation 
of the flywheel.  This model can be used to study a gimbal 
support, as well as other support designs. 
 To effectively decouple the flywheel and vehicle yaw 

axes (which reduces gyroscopic loads on flywheel bearings 
during vehicle turns), the flywheel spin axis must remain 
nominally vertical.  Thus, the support cannot be entirely neu-
tral (i.e., if displaced from vertical and released, it must return 
to vertical).  A restoring force is required to give the flywheel 
a “home” position (nominally vertical).  This is easily done 
with springs or gravity, or both.  Without a home equilibrium 
position, the flywheel could drift away from the vertical posi-
tion, and decoupling in the yaw axis would be lost. 
 The analytical results obtained from the model can be 
summarized as follows.   While at operating speed, anytime 
the flywheel is not in its “home” equilibrium position, it will 
precess about its equilibrium position in a slow circular orbit, 
always opposite the direction of flywheel spin.  Classical 
analysis of a spinning top can be used to investigate the nature 
of this motion [12].  In practice, however, the result is simply 
that the flywheel will precess whenever displaced from equi-
librium.  The following expression for the rate of precession is 
derived in the addendum: 
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Forces or actions which can displace the flywheel from equi-
librium, and thereby cause precession, include: 

a) Vehicle turns in a plane (yaw), but only if the flywheel 
is not in its home position relative to the vehicle. 

b) Vehicle pitch or roll, but only if the FESS support em-
ploys a spring and/or damper attached to the vehicle 
frame. 

c) Vehicle lateral acceleration (turning, braking, accelerat-
ing and bumps), but only if the support employs a pen-
dulum type spring (e.g., the flywheel center of gravity 
is below gimbal axis). 

d) Torque on the FESS axis originating with the FESS 
motor-generator, but only if the stator’s reaction torque 
vector has a component normal to the flywheel spin 
axis. 

e) Torque on the FESS rotor applied by bearings, but only 
if the flywheel bearing’s stator reaction torque vectors 
have components normal to the flywheel spin axis. 

 
 Having a home position means the flywheel will pre-
cess, an unavoidable aspect of normal flywheel operation.  It 
is important to note that precession has several sources and 
can accumulate.  Precession can be limited to acceptable val-
ues only through the use of damping on the pitch and roll mo-
tions.  Damping must be sufficient relative to the precession 
inputs to minimize the probability of exceeding the allowable 
motion range of the support.  As will be shown later, however, 
excessive damping can also be a major source of precession. 
 The focus of this paper is on bearing loads.  The load 
on each radial bearing for a freely precessing flywheel can be 
expressed as follows (see addendum): 
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Figure 2.  Mathematical model and coordinate systems used 
to analyze flywheel gyrodynamics 
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For practical values of support parameters, this load can be 
small (<45 N).  Since the load is small during free precession, 
efforts then focus on assuring that precession motion does not 
become overly large during flywheel operation. 
 Simulation studies performed to date have investigated 
loads originating with different of types of bus motion, by 
computing resulting flywheel precession.  Different scenarios 
for bus motion have been devised, these generally correspond 
to various kinds of roads and/or driving habits.  This approach 
is complicated somewhat by the fact that the basic preces-
sional motion becomes linearly unstable under certain condi-
tions of bus turning.  Expressions for stability of the preces-
sional motion are given in the addendum.  In the stability 
analysis, the motion of the bus is not an excitation input, but 
rather is a moving boundary condition as seen by the flywheel.  
If the vehicle is viewed from above, and the flywheel is rotat-
ing counterclockwise, then right hand turns at high rates can 
cause flywheel precession to grow continuously.  Left hand 
turns, on the other hand, always dissipate precessional motion. 
 
MEASURED LOADS 
 
 Road measurements conducted at the UT-CEM by re-
search engineers and UT Engineering Design students, have 
yielded estimates of design loads [13].  For these measure-
ments, accelerometers were mounted at various places on the 
body of an Austin transit bus.  Digital data was sampled at 24 
kHz, while the bus went over routes that included pot holes.  
The analyzed data from these tests showed that vibrations and 
shocks experienced by the bus was typically less than 1 gee.  
However, there is a relatively high probability that shock loads 
in excess of 5 gees (resulting from common obstacles such as 
pot holes) will occur.  Shock loads as high as 8 gees were 
measured when the suspension "bottomed out."  The two plots 
(fig. 3 and 4), taken from the data show typical response to 
road bumps. 
 Northrop Grumman, developer of the ATTB, has also 
made measurements of operational loads.  Their (as yet un-
published) tests covered a broad spectrum of operational situa-
tions.  Although axle acceleration of up to 13 gees occurred, 
high peaks were largely attenuated by the suspension and tires.  
Northrop concluded that peak shock loads on chassis mounted 
components will be less than 3 gees during transit operations.  
The difference between the 5 to 8 gee peaks measured in Aus-
tin and 3 gee peaks measured by Northrop is believed to be the 
softer suspension of the ATTB. 
 
DESIGN OPTIONS 
 
 During the initial design stages of the FESS, UT-CEM 
engineers assumed that the primary peak load on the magnetic 
bearing would be the 3 gee shock loads imposed by road 
shock.  The magnetic bearings are designed to transition to 
rolling element back-up bearings above a 3 gee level.  During 

the design of the FESS mounting system described above, it 
was determined that gyroscopic effects can potentially create 
forces greater than those caused by a 3 gee shock.  For this 
reason, the UT-CEM FESS mounting system is designed, not 
only to attenuate the shock and vibration from the road, but 
also to prevent gyroscopics from causing the magnetic bear-
ings from transitioning to rolling element bearings in most 
situations. 
 Because of flywheel gyroscopics, the 3 gee capability 
of the magnetic bearings will be exceeded if the rotational rate 
of the flywheel spin axis exceeds 0.1 rad/s.  As a practical 
matter, this rate of rotation can be exceeded during vehicle 
operation.  Exiting a steep driveway can produce a pitch rate 
in a transit bus of 0.24 rad/s.  Hitting a speed bump at high 
speed or going over a chuck hole can induce bus pitch of 0.23 
and 0.18 rad/s, (for example, see [10]).  Even worse, a hard 
turn by the driver can cause bus roll at rates up to 1.4 rad/s.  
All of these conditions will cause the magnetic bearings to 
transition to the rolling element bearings.  The goal of the 
FESS mount design is to devise an approach that will prevent 
this transition.  
 Table 1 shows three basic design options.  In the non-
tilting case, the flywheel cannot tilt with respect to the vehicle.  
Tilting concepts allow the flywheel to pitch (nose up and 
down) and roll (left and right) relative to the vehicle. 
 The non-tilting option was not a serious candidate due 
to the required capacity of the magnetic bearings.  Of the re-
maining two concepts, both allow tilt.  The active mount of-
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Figure 3. Chassis acceleration, typical pot-hole 
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Figure 4.  Chassis acceleration, typical pot-hole (expanded 
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fers the best overall performance.  With an active mount, the 
flywheel housing can pitch and roll to respond to the pitch and 
roll motion of the bus.  In this way, the actively controlled 
system can maintain a vertical spin axis at all times.  Because 
the spin axis orientation remains stationary, there is no preces-
sion torque in reaction to bus tilt.  An inclinometer working in 
conjunction with torque motors on each of two gimbal axis, 
for example, can keep the flywheel spin axis vertical at all 
times.  
 While the active system is the most effective way to 
nullify gyroscopic effects, it is more complex and expensive.  
The concept requires at least two torque motors along with 
associated electronic drivers and inertial sensors.  A passive 
tilting mounting system concept, however, also achieves satis-
factory results with simple passive hardware.  It prevents bear-
ing transitioning in all but the most extreme cases.  A passive 
gimbal system is the basis for the UT-CEM vehicular FESS 
program. 
 
 EXAMPLE CONCEPTUAL DESIGN - To design a 
passive gimbal concept, estimates of bus roll and pitch are 
required.  Information on roll and pitch can be found in refer-
ences on roadway design [14].  Discussions with operators in 
Los Angeles and Houston revealed that banked roads can be 
as great as 10°.  Coupled with estimated suspension roll of up 
to 6°, this give possible roll-tilting of the bus of as much as 
16°.  While bus pitch is less (2.5°), road grades are occasion-
ally as high as 12°.  Best estimates are that total bus tilt rarely 
exceeds 10°.  Added to these relatively large tilt angles, is the 
possibility of displacement amplification inherent in passive 
suspension systems. 
 The center of tilt of the FESS mounting system is 
placed at the center of gravity of the flywheel.  This prevents 
coupling of lateral and transverse gees into tilting torques.  
Fortunately this placement is also favorable to minimizing 
space swept by tilting of the FESS.  Movements of up to 20° 
are possible without excessive clear space required for sweep.  
A design value of plus or minus 20° allowable tilt accommo-
dates nearly all operational bus motion except for rollover of 
the bus.  This 20° allowable tilt also provides for motion am-
plification of 2 for all but the rarest conditions.  During these 
rare conditions, transitioning to the backup bearings might 
occur. 
 The passive mount must provide for cushioning in 5 
degrees of freedom: lateral, longitudinal and vertical transla-
tion, and pitch and roll rotation.  To keep magnetic bearing 

forces low, roll and pitch motion must have a very small 
spring rate.  The vertical, lateral, and longitudinal spring rates 
are selected to provide mount natural frequencies away from 
the dominant driving frequencies of the bus.  Northrop has 
made estimates (table 2) of the characteristics of the ATTB.  
Bounce, roll, and hop are the primary excitation frequencies 
for the FESS mount.  While the roll and pitch spring rates 
must be soft, excitation frequencies of the bus dictate the 
translational spring rates of the mount be relatively stiff.  UT-
CEM design engineers evaluated several approaches to the 
passive tilt concept using various configurations of springs 
and slides.  The use of a gimbal to decouple rotational motion 
was necessary to achieve the desired combination of stiffness. 
 

 
 Figure 5 shows a typical mounting system layout.  This 
concept uses a gimbal to provide freedom to tilt in the pitch 
and roll directions.  The use of the gimbal requires more space 
than other approaches, but by careful orientation of compo-
nents, the concept fits within a 30x30x30 in. space. 
 

 
SUMMARY 
 This paper attempts to identify the primary sources of 
bearing loads for energy storage flywheels targeted for use in 
roadway vehicles, with emphasis on transit buses.  For reasons 
of both cost and energy efficiency, flywheel bearings are best 
designed to be as small as possible, and to not have more load 
capacity than necessary for the intended application.  The 

Table 1.  FESS mount design concept 
 

 
 

Table 2.  Bus natural frequencies of the ATTB 
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Figure 5.  FESS gimbal mounting concept 



most significant sources of bearing loads were found to be due 
to road shock, and flywheel gyrodynamics.  In the case of fly-
wheels supported by magnetic bearings, it is imperative to 
accurately quantify the anticipated bearing loads, so as to 
minimize the frequency of occurrence of touchdowns on me-
chanical backup bearings.  It was shown that to avoid poten-
tially very large loads due to gyrodynamics, a flywheel’s spin 
axis must be oriented vertically and the flywheel must be sus-
pended in a two-axis gimbal, so as to decouple its pitch and 
roll motion from that of the vehicle.  Formulas for flywheel 
precessional motion due to gyrodynamics, and the correspond-
ing loads on the bearings were presented.  It was shown that 
restraining springs and dampers are necessary on the gimbal 
axes to keep the flywheel vertical, and to limit precession re-
sponse to acceptable values.  It was also pointed out that gim-
bal stiffness and damping parameters must be carefully chosen 
to avoid dynamic instability problems under certain vehicle 
curving conditions. 
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NOMENCLATURE 
α&  turning rate of the bus 
α  turning angle of the bus  
b radial magnetic bearing span  
C gimbal viscous damping constant  
φ  flywheel rotation about the Z axis (roll)  

bφ  bus roll coordinate  

h vertical distance from gimbal axis to flywheel center of 
gravity  

I flywheel rotor and housing transverse inertia  

i 1−  
K gimbal axis spring rate  
P flywheel rotor polar inertia  
θ  flywheel rotation about the x axis (pitch)  

bθ  bus pitch coordinate  

s complex eigenvalue, the imaginary part is the preces-
sion rate  

t time  

pτ  precession time constant, -1/Real(s)  

Ω  flywheel rotational speed  
W weight of flywheel rotor and housing  

pω  Precession rate, imaginary part of s  

X inertial axis pointing out driver side of vehicle (at t=0)  
x intermediate axis, the X axis rotated φ radians about the 

Z axis  
ψ  flywheel rotation about its primary spin axis  
Y inertial axis pointing out top of vehicle (at t=0)  
Z inertial axis pointing out front of bus (at t=0)  
 
 
ADDENDUM 
 Figure 2 shows a schematic of the mathematical model.  
The three Euler angles used to specify the absolute orientation 
of the flywheel are shown in the figure [12].  The flywheel is 
initially on the Z axis, pointing out the front of the bus.  A 
small angle φ rotates the flywheel about the Z axis.  Then the 
angle θ is subtended an amount close to 90° about the dis-
placed X axis.  The θ rotation causes the flywheel’s primary 
spin axis to point downward.  Finally, the ψ rotation is the 
primary spin coordinate of the flywheel (i.e., ψ&  is the spin 
speed).  Dynamic equations of motion are obtained directly 
from the Lagrangian function, as outlined in [12].  The result-



ing equations are given below, and are seen to be nonlinear 
second order differential equations.  Solution of these equa-
tions was conducted numerically by direct integration using a 
4th order Runga-Kutta algorithm for various sets of system 
parameters and initial conditions.   
The dynamic equation of motion in the f coordinate is: 
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The dynamic equation of motion in the θ coordinate is: 
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The dynamic equation of motion in the ψ coordinate is: 
 

 0sincos =+− ψθθφθφ &&&&&& PPP  (A-3) 
 

 The stiffness and damping terms in these expressions 
act on the absolute deflection and velocity, but really need to 
be relative to the bus chassis.  That is, the spring constant 
should multiply (φ - φb) and (θ - θb), the deflection relative to 
the bus chassis, and similarly for velocities in the damping 
terms.  With this change, these equations can be used to simu-
late either free precession of the flywheel, or precession re-
sponse to any pitch and/or roll motion of the bus.  In order to 
study the affect of bus turning motion on flywheel response, 
the input time functions for φb and θb are modified accordingly 
(see below). 
 Expressions (A-1), (A-2) and (A-3) can be linearized by 
assuming that the angles φ and θ-π/2 are small.  Angles up to 
10° incur an error of only 0.5% in sin and cosine trig func-
tions.  With this assumption, (A-1) and (A-2) simplify to: 
 

 bb CKKCPI φφφφθφ &&&&& +=++Ω+  (A-4) 

 
 bb CKKCPI θθθθφθ &&&&& +=++Ω−  (A-5) 

 
 The coordinates f and q are absolute inertial coordinates 
for the flywheel in roll and pitch, respectively.  The coordi-
nates φb and θb represent roll and pitch motion of the bus.  In 
order to incorporate turning motion of the bus into (A-1) and 
(A-2), expressions have been developed which transform the 
roll and pitch angles, φb and θb, for a turned bus, back to the 
inertial reference frame XYZ.  The flywheel absolute position 
and velocity are first resolved onto a coordinate frame which 
is fixed to the bus.  Then expressions for the gimbal stiffness 
and damping torques are written, in the bus reference frame.  
These torque components are then resolved back onto the iner-
tial frame, and inserted into (A-4) and (A-5).  If α is the turn-
ing angle of the bus with respect to the internal frame, (A-4) 
and (A-5) then become: 
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 These expressions can be readily used to compute the 
amplitude of steady state forced precessional response to har-
monic roll or pitch motion of the bus.  For example, if the bus 
were continuously traversing a series of hills, this would be a 
periodic input in the pitch coordinate.  The resulting peak am-
plitudes of precession in both the roll and pitch coordinates 
can be calculated directly from (A-6) and (A-7). 
 In (A-6) and (A-7), the stiffness and damping constants 
for the two gimbal axes were taken to be equal (i.e., 
Kφ=Kθ=K), but they do not need to be.  If the gimbal parame-
ters are symmetric, these two expressions can be combined 
into one via a substitution. 
 
 Letting    z = φ + iθ 
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 The homogeneous form of (A-8), yields an eigensolu-
tion for the complex eigenvalues of the rotating flywheel.  The 
imaginary part of the eigenvalue is the damped precession 
frequency.  The reciprocal of the imaginary part, times 2π, is 
the orbital period in seconds.  The reciprocal of the real part is 
the exponential time constant of free decay for the precession 
motion.  The real part should be negative to indicate that pre-
cession decays.  Should the real part be positive, the preces-
sion amplitude would grow without bound. 
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The precession rate and time constant are defined as: 
 
 ωp = Im (s)            (rad/s) (A-10) 
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 The plus sign in (A-9), yields an eigenvalue of very low 
frequency, having an orbital period on the order 1 to 2 minutes 
per cycle for a flywheel sized for a bus.  The minus sign re-
sults in a high frequency eigenvalue, on the order of 100 orbits 
per second.  It is the slow eigenvalue which is observed as the 
flywheel responds to motion of the bus. 
 The last term on the left hand side of (A-8) represents a 
coupling mechanism between turning of the bus and flywheel 



precession.  This coupling acts by way of gimbal damping.  It 
can be shown that this term can cause the real part of the slow 
eigenvalue to become positive, and the flywheel to become 
dynamically unstable.  This happens when Ω and α&  are oppo-
site in sign, and the turning rate α&  is above a certain threshold 
value.  The threshold value depends on the gimbal parameters, 
and the turning rate.  The threshold value can fall within the 
range of practical bus turning rates.  So care must be taken 
when selecting gimbal parameters.  In the field of high per-
formance turbomachinery, dynamic instability mechanisms 
similar to this exist in many forms [15]. 
 Through (A-6) and (A-7), an expression can be devel-
oped for the flywheel bearing loads during any precession 
motion.  The flywheel precession is a simple circular orbital 
motion, slowly spiraling inward when stable, or outward when 
unstable.  Again, the precession is slow with the orbital period 
on the order of minutes per orbit.  By substituting the condi-
tions for circular precession into (A-6) and (A-7), the follow-
ing expression for torque is obtained (the bus is stationary). 
 
 Free Precession Torque = θω pPΩ  (A-12) 

 The torque depends on the gimbal parameters by way 
of the precession rate ωp.  It is also proportional to θ, the am-
plitude of precession.  To convert this to load on the flywheel 
radial bearings, this torque is divided by the bearing span. 
  

 Free Precession Bearing Load = 
b

P pθωΩ  (A-13) 

 
 When the bus pitches or rolls suddenly (e.g., railroad 
tracks and curbside storm drains), a relatively large velocity of 
pitch or roll will occur.  Since the flywheel will essentially 
maintain a constant orientation during such a short transient 
event, the gimbal damping constant, C, times the event veloc-
ity θ&  will produce a torque, and associated bearing loads. 
 

 Fast Excursion Bearing Load = 
b
Cθ&  (A-14) 

 If this type of load proves to be overly large, then some 
type of load limiting feature must be incorporated into the 
damper device.  For example, standard automotive shock ab-
sorbers have internal relief valves to limit damping forces. 

 


